Showing posts with label Deep Q Learning. Show all posts
Showing posts with label Deep Q Learning. Show all posts

Friday, October 20, 2023

Artificial Intelligence Book 1 - Using Images in AI - Deep Convolutional Q Learning

I just finished Chapter 12 in my AI Crash Course book, from Hadelin de Ponteves.

Chapter 12 is a short chapter actually. It explains, in a refreshing and surprising simple way, the concept of Convolutional Q Learning which pertains to how image recognition/translation is fed into a Deep Q Neural Network (from prior chapters in the book).

The chapter covers four steps:

  1. Convolution - applying feature detectors to an image
  2. Max Pooling - simplifying the data
  3. Flattening - taking all of the results of #1 and #2 and putting them into a one-dimensional array
  4. Full Connection - feeding the one-dimensional array as Inputs into the Deep Q Learning model

I probably don't need to go over all of these details in this blog as that would be redundant. 

If you have some exposure to Computing and are familiar with Bitmaps, I think this process has shares some conceptual similarity to Bitmaps. 

For example, in Step 1 - Convolution - you are essentially sliding a feature detector or "filter" (e.g. 3x3 in the book) over an image - starting on Row 1, and sliding it left to right one one column at a time before dropping down to Row 2 and repeating that process. On each slide interval, you are employing a mapping process of multiplying each square of the image (again using a 3z3 area in the book) to the corresponding value of the map. Each individual iteration of this process creates a single Feature Map

In sliding this 3x3 map across, you can only go 5 times to the right before you run out of real estate. Then you drop down - and you can only drop down 5 times until you run out of real estate in that direction. So if I am correct in my interpretation about how this works, you would get 5 x 5 = 25 Feature Maps with a 7x7 image and a 3x3 filter.

Pooling is actually similar to the process of filtering to a feature map. The aim of it is to reduce the size and complexity of all of those feature maps. The sliding process is the main difference; instead of going one column / row on each slide, you are sliding (using a 2x2 in the book) over the entire area of the pool size.

Once you get all of the pools, these are flattened out into a single dimensional array, and fed into the Inputs of the standard Q Learning model, with the outputs pertaining to image recognition.

This diagram shows how all of this is done, with a nice comparison between Biological image recognition, with this AI image recognition process.


Image Recognition - Biological vs AI

Source: frontiersin.org

Now in Chapter 12 of the book, the process represents what we see above. There is just a single Convolutional Layer and Pooling Layer before the AI Neural Network (hidden layers) are engaged. 

Chapter 12 does not cover the fact that the Convolutional Layer is an iterative process that includes Convolution followed by Sub-Sampling in an iterative fashion. 

This diagram below represents this.


In the next chapter, there is a code sample, so I will be able to see whether it includes this sub-sampling process or not.


Deep Q Learning - Neural Networks - Training the Model Takes Resources

I now am starting to see why those companies with deep pockets have an unfair advantage in the not-so-level playing field of adopting AI.  Resources.  

It takes a LOT of energy and computing resources to train these Artificial Intelligence models.

In Chapter 11 of AI Crash Course (by Hadelin de Ponteves), I did the work. I downloaded, inspected, and ran the examples, which are based on Google's Deep Mind project. The idea is to use an AI to control server temperature, and compare this with an "internal" (no AI) temperature manager.

What you would do, is to train the model (first), and it would produce a model.h5 file, that would then be used when you ran the actual model through testing. 

The problem, though, is that on my rather powerful Mac Pro laptop, the training would never run. I would return HOURS later, only to see [ killed ] on the command prompt. The OS apparently was running out of resources (memory probably).

So I started tinkering with the code.

First, I reduced the number of epochs (from 25 to 10). 

#number_epochs = 25  

number_epochs = 10

Which looked like it helped, but ultimately didn't work.

Then, I reduced the number of times the training loops would run. When I looked at the original code, the number of iterations was enormous.

# STARTING THE LOOP OVER ALL THE TIMESTEPS (1 Timestep = 1 Minute) IN ONE EPOCH

while ((not game_over) and timestep <= 5 * 30 * 24 * 60):

This is 216,000 loop iterations in the inner loop, and of course this needs to be considered from the context of the outer loop (25, or, adjusted down to 10 as I did).  So 216,000 * 25 = 5 million, 400 thousand. If we reduce to 10 the number of Epochs, we are dealing with 2 million, 600 thousand.

I don't know how much memory (Heap) is used over that many iterations but on a consumer machine, you are probably going to tax it pretty hard (remember it has to run the OS and whatever tasks happen to be running on it).

I was FINALLY able to get this to run by reducing the number of Epochs to 10, and reducing the steps to 5 * 30 * 24 (3600). And even with this drastic reduction, you could see the benefits the AI performed over the non-AI temperature control mechanism.

Thursday, October 5, 2023

Artificial Intelligence Book 1 - Crash Course in AI - Deep Q Learning

 I read about Q Learning, and was feeling somewhat proud of myself for sticking my toe into the water.

Then I read about Deep Q Learning - in this same book - and it was as if someone took an ice bath and dumped it over my head. I went into the tunnel - advancing through chapters 9,10 and 11, only to come out the other end confused ("what did I just read?").  

The coding examples were interesting enough that I kept pushing forward, but a lot of what is in the code is masked by the fact that the math and formulas were hidden away in libraries like Keras.  So while I thought the examples were cool and I had a grasp of the problems they were attempting to solve, I still came out at the end with confusion and question marks in my head.

Q Learning vs Deep Q Learning

 In Chapter 9, which covers Deep Q-Learning, things start to get very complex very fast. So what is the difference between Q Learning (introduced in Chapter 7-8), and Deep Q Learning?

  • More complex problems in Deep Q Learning - with more variables
  • The approach to solving a more complex problem

With regards to the approach to solving problems, the book gets into a good discussion - worth mentioning here - about the difference between ArgMax and SoftMax.

Argmax vs Softmax

In Q Learning, the 'name of the game' was to find (and use) the highest Q Value. This is referred to as "Exploitive" and is known as the ArgMax method of Reinforcement Learning.  

In Deep Q Learning, probability distributions across several variables are being continually updated during the training of the model. You have a set of (input) variables, with specific weights, but as you take random samples and compare the predicated value to the actual value, the weights are updated according to the new realities (results).  This process is referred to as Explorative (in nature) and is named the SoftMax method.

Chapter 9 starts you off simple(r). With a Real Estate example of predicting home prices. Seems sensible enough, since we can all think of input variables that help drive the price of a home.  The focus here is on trying to show the process, which is broken down into the following steps:

  1. Uploading the Data Set (actual home prices)
  2. Building the Neural Network
  3. Training the Neural Network
  4. Displaying the Results

From here, the book advances into Deep Learning Theory. The idea borrows from the human brain, which is connected by Synapses that send signals. This is the fundamental concept behind Deep Q Learning because it starts with a certain number of "Layers". There are a minimum of three layers that are as follows:

  1. Input Layer - consists of Input Values, and each of these gets weights that are continually adjusted
  2. Hidden Layer(s) - these "neurons" are also continually adjusted
  3. Output Layer - this layer compares predicted values to actual values and computes Loss Error.

The loss error gets back-propagated through the layers, re-adjusting the weights continually, using a concept called Gradient Descent (which requires at least a basic understanding of Calculus). The book covers three types of Gradient Descent (Batch, Stochastic and Mini-Batch).

The book mentions Activation Functions that take weighted input values, and return an output value. The book mentions three of these, which sound intimidating, but if you are familiar with Electronics and/or Trigonometry, these names actually make some sense:

  • Sigmoid Activation Function - a logarithmic curve denoting a move from state value (no lower than) 0 to (no higher than) 1.
  • Rectifier Activation Function - a linear but angular approach from state 0 to state 1
  • Threshold Activation Function - An abrupt binary state transition from 0 to 1. This is much like flipping a switch into an on/off state.

Now from here (Chapter 9), the book goes into Chapter 10 - Self Driving Car - which an implementation of Chapter 9 - and quite fun to do. Then it dives into Chapter 11, which uses the example taken from Google's DeepMind project that optimizes server temperature with a simulation.

Chapter 11 in particular really drives home the process by showing how you can optimize or minimize costs.

  1. Building the Environment
  2. Building the Brain - using DropOut vs NoDropOut techniques
  3. Implementation (of the Deep Learning Algorithm)
  4. Training the AI - using either Early Stopping or No Early Stopping
  5. Testing the AI

Seeing is believing, and when you see this code run and start to view the results, I have to admit it is pretty darn cool.

It also takes a LONG time to run. I had to shorten the epochs from 100 to 25 to keep the job from getting killed (I am not sure what exactly was killing it). Running for 100 epochs was taking my laptop HOURS to finish (2-3 hours). But at the end of each Epoch, almost always the energy savings from the AI was superior to the energy savings of not using the AI (which in this case is modeled by the server's mainboard temperature controller).

There's so much more to discuss. But I think I have hit the highlights here.

SLAs using Zabbix in a VMware Environment

 Zabbix 7 introduced some better support for SLAs. It also had better support for VMware. VMware, of course now owned by BroadSoft, has prio...