Showing posts with label driverctl. Show all posts
Showing posts with label driverctl. Show all posts

Tuesday, April 12, 2022

DPDK Testing using TestPMD on a VMWare Virtual Machine

 

Testing and verifying DPDK is NOT easy. And it is even more challenging in VM environments.

After investing in VMWare hypervisors that supposedly run DPDK, we wanted to test and verify that a) it worked, and b) the performance was as advertised.

Below is a list of steps we took to get the host and a DPDK-enabled VM ready:

  • Hypervisor(s)
    • Enabled the ixgben_ens drivers on the host. There are some ESXI CLI commands you can run to ensure that these are loaded and working. 
  • VM Settings
    • VMXNet3 adaptor types on VM
    •  Latency Sensitivity = High (sched.cpu.latencySensitivity=TRUE)
    • Hugepages enabled in VM (sched.mem.lpage.enable1GPage TRUE
    • Reserve all Guest Memory
    • Enable Multiple Cores for High I/O Workloads (ethernetX.ctxPerDev=”1” )
    • CPU Reservation
    • NUMA Affinity (numaNodeAffinity=X)

After this, I launched the VM. I was smart enough to launch the VM with 3 NICs on it.

  1. eth0 - used as a management port, for ssh and such.
  2. eth1 - this one to be used for DPDK testing
  3. eth2 - this one to be used for DPDK testing

Launching a VM (i.e. a RHEL Linux VM) with these settings, does NOT mean that you are ready for DPDK!! You still need a DPDK-compiled application on your OS. DPDK applications need to use DPDK-enabled NIC drivers on the VM, and on a Linux VM, these drivers are typically run as kernel modules. There are several different types and kinds of DPDK drivers (kernel modules), such as vfio, uio-pci-generic, igb_uio, et al.

To prepare your VM for testing, we decided to install DPDK, and then run the TestPMD application.

Installing DPDK

To get DPDK, you can go to dpdk.org, and download the drivers, which comes as a tar.gz file that can be unpacked. Or, there is a github site that you can use the clone the directories and files.

# git clone http://dpdk.org/git/dpdk

 It is important to read the instructions when building DPDK, because the old-style "make configure", "make", "make install" process has been replaced by fancier build tools like meson and ninja that you need to install. I chose to install by going to the top of the directory tree, and typing:

# meson -Dexamples=all build

This does not actually compile the code. It sets the table for you to use Ninja to build the code. So the next step was to type:

# ninja

Followed by:

# ninja install

The "ninja install" puts a resultant set of DPDK executables (some ELF, some Python), in /usr/local/bin directory (maybe installs some stuff in other places too).

Right away, I hit a snag. When I tried to run dpdk_setup.py, to bind the VM The kernel module igb_uio.ko was nowhere to be found.

I was completely at a loss about this, until I realized that some other DPDK packages (test load generators) compile DPDK and the igb_uio.ko drivers, either by including them outright, or copying the sources into the build process. Trex, for example, builds the drivers. And so does a package called DTS. After I decided to git clone the DTS package, I stumbled upon some documentation in an archived package called DTS (DPDK Testing Suite). In the DTS package, in the /opt/github/dts/doc/dts_gsg/usr_guide there is a file called igb_uio.rst which describes how to compile the igb_uio.ko drivers for use with DTS. This was the missing link. The section of the file up front, described that the drivers have been moved into a different github repository - and are now separated from DPDK!

Get Source Code - note: assumption is that you are doing this in /opt directory.
---------------

Get igb_uio::

   git clone http://dpdk.org/git/dpdk-kmods
   git clone git://dpdk.org/dpdk-kmods


Get DPDK::

   git clone git://dpdk.org/dpdk
   git clone http://dpdk.org/git/dpdk

The author of this igb_uio.rst file described the process that can be used to fuse DPDK and the drivers back together into a single build - the way it used to be. How convenient. Here is how that is done.

Integrate igb_uio into DPDK
---------------------------

Assume you have cloned the dpdk and dpdk-kmods source code
in opt/dpdk and opt/dpdk-kmods.

Step 1
# Copy dpdk-kmods/linux/igb_uio/ to dpdk/kernel/linux/:

    [root@dts linux]# cp -r /opt/dpdk-kmods/linux/igb_uio /opt/dpdk/kernel/linux/

you should see igb_uio in your output:

    [root@dts linux]# ls /opt/dpdk/kernel/linux/
    igb_uio  kni  meson.build

Step 2:
# enable igb_uio build in meson:

since we have copied the directory over to /opt/dpdk, we will edit the meson.build there.

*   add igb_uio in /opt/dpdk/kernel/linux/meson.build subdirs as below:

     subdirs = ['kni', 'igb_uio']

NOTE: this is an important step not to miss because it will not build if you don't do this.

Step 3:
*   create a file of meson.build in /opt/dpdk/kernel/linux/igb_uio/ as below:

     # SPDX-License-Identifier: BSD-3-Clause
     # Copyright(c) 2017 Intel Corporation

     mkfile = custom_target('igb_uio_makefile',
             output: 'Makefile',
             command: ['touch', '@OUTPUT@'])

     custom_target('igb_uio',
             input: ['igb_uio.c', 'Kbuild'],
             output: 'igb_uio.ko',
             command: ['make', '-C', kernel_dir + '/build',
                     'M=' + meson.current_build_dir(),
                     'src=' + meson.current_source_dir(),
                     'EXTRA_CFLAGS=-I' + meson.current_source_dir() +
                             '/../../../lib/librte_eal/include',
                     'modules'],
             depends: mkfile,
             install: true,
             install_dir: kernel_dir + '/extra/dpdk',
             build_by_default: get_option('enable_kmods'))

How wonderful. To recap, here is what we did:

  1. copy the source files from dpdk-kmods into the proper directory of dpdk
  2. snap in the proper meson build file (which the author graciously provides)
  3. uninstall (previous build, assuming you built DPDK before doing all of this) 
  4. rebuild
  5. reinstall

Step 3:

# cd /opt/dpdk/build

# ninja uninstall

Step 4:
# ninja

Step 5:

# ninja install

A quick find command shows that the kernel module was built.

[root@acdcchndnfvdpk0001 dpdk]# find . -print | grep ko
./build/drivers/net/octeontx/base/libocteontx_base.a.p/octeontx_pkovf.c.o
./build/lib/librte_table.a.p/table_rte_table_hash_cuckoo.c.o
./build/lib/librte_hash.a.p/hash_rte_cuckoo_hash.c.o
./kernel/linux/igb_uio/igb_uio.ko
./kernel/linux/igb_uio/.igb_uio.ko.cmd
./drivers/net/octeontx/base/octeontx_pkovf.c
./drivers/net/octeontx/base/octeontx_pkovf.h
./lib/hash/rte_cuckoo_hash.h
./lib/hash/rte_cuckoo_hash.c
./lib/table/rte_table_hash_cuckoo.h
./lib/table/rte_table_hash_cuckoo.c

Now, we have something we can use to bind our adaptors to the drivers!!! 

You can bind the adaptors to the drivers using a couple of different methods. You can use a utility that is supplied by DPDK to do it (dpdk-devbind.py), or you can also use a nifty Linux utility called driverctl, which I prefer (this needs to be installed typically with a package manager as it generally does not roll onto the OS with a default installation). 

A script I use to do the binding looks like this:

# cat bind-pci.sh
#!/bin/bash

lshw -class network -businfo | grep pci

while :
do
   echo "Linux Interface to override (e.g. p1p1, p1p2, p1p3, p1p4):"
   read iface
   if [ ${iface} == "skip" ]; then
      break
   fi
   lshw -class network -businfo | grep pci | grep ${iface}
   if [ $? -eq 0 ]; then
      pci=`lshw -class network -businfo | grep pci | grep ${iface} | awk '{printf $1}' | cut -f2 -d"@"`
      echo "We will override the kernel driver with igb_uio for PCI address: ${pci}"
      driverctl set-override ${pci} igb_uio
      break
   fi
done 

When you run this script, you can check to see if the binding was successful by running a DPDK command:

# python3 /usr/local/bin/dpdk-devbind.py --status

And this command will show you whether the binding worked or not.

Network devices using DPDK-compatible driver
============================================
0000:0b:00.0 'VMXNET3 Ethernet Controller 07b0' drv=igb_uio unused=vmxnet3
0000:13:00.0 'VMXNET3 Ethernet Controller 07b0' drv=igb_uio unused=vmxnet3


Network devices using kernel driver
===================================
0000:03:00.0 'VMXNET3 Ethernet Controller 07b0' if=eth0 drv=vmxnet3 unused=igb_uio *Active*

NOTE: To remove a driver binding, "driverctl unset-override ${pci address}" would be used. In which case, the driver will now become visible to the Linux OS in the Virtual Machine again.

So we now have one adaptor that the Linux Networking Kernel sees (eth0), but the two adaptors Linux saw prior to the binding (eth1, and eth2), have now been "reassigned" to DPDK. And the OS does not see them at all, actually, anymore. 

If we run an ifconfig, or an "ip a" command to see the Linux network interfaces in the VM, this is what it now looks like.

# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:50:56:b7:83:1a brd ff:ff:ff:ff:ff:ff
    inet 192.168.2.10/24 brd 192.168.2.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::250:56ff:feb7:831a/64 scope link
       valid_lft forever preferred_lft forever

NOTE: No eth1 or eth2 shows up in Linux anymore, as they have been handed over to DPDK, which bypasses the Linux Kernel entirely.

Okay, now we have adaptors set up for DPDK. Now what? In our next step, we will do some simple verification with TestPMD.

Monday, May 11, 2020

DPDK Hands-On - Part IV - Setting Up the DPDK Package


This post is where the fun really started.

I failed to mention, probably, in any of my earlier posts, that I was using CentOS7 as my operating system. Why? Because I am more familiar with the Red Hat Linux than I am with Ubuntu. Going forward, it will be difficult to ride multiple horses with Linux, because RHEL and Ubuntu (especially in 18.04) are deviating quite a bit on System Administration and Tools.

So - when you go to the dpdk.org website, all of the instructions are written in such a way that they assume that you will download and compile the packages. This sounded scary to me. I mean, not really, because I have compiled packages in the past, but I know that when you compile packages from scratch, you typically don't get conveniences like SystemD unit files to set up the service for easy start/stop/restart.  We are in 2020 now. Why can't I just use yum and install the damned package?

As it turns out, on CentOS7, there are yum repositories for DPDK. And, when you run "yum install dpdk", you can get a package that is labeled 18.11.2 as the release. After installing this package, I quickly figured out that there are no scripts, tools or utilities. So, having some general experience with CentOS 7 and its package convention, I looked for the complement packages "devel and tools", and indeed, located those and installed them with "yum install dpdk-tools" and "yum install dpdk-devel".

NOTE: I only really needed the dpdk-tools, as I was not doing any dataplane kit development at this point.

But, things were going smooth so far. Knowing that VFIO is the new driver, I decided to go ahead and load the kernel module for VFIO.

Now, as I was looking over a couple of guys' scripts for doing this (both of them were using DPDK documentation as a basis), I saw that one fellow was installing two packages. Since we were dealing with PCI (more on this later), and Kernel Modules, it made sense to install these:
  1. pci_utils
  2. kernel-devel
After all, these are just tools and utilities and there should be no risk in installing these on your system.

Next, in his script, I saw him changing permissions on a file in /dev - and this really had me concerned. Why would someone be doing this? Is this a bug that he is fixing? 

Turns out, these are instructions on the dpdk.org website, which I found later after looking at his script.


#chmod a+x /dev/vfio
#chmod 0666 /dev/vfio/*

So basically, what this guy was doing, was pretty much following the standard "cookbook" for binding VFIO drivers. The VFIO drivers, as mentioned in Part II, are poll mode drivers that are installed on your system when you install DPDK.

The link for binding NICs can be found at: https://dpdk-guide.gitlab.io/dpdk-guide/setup/binding.html

This documentation gives you two methods for binding your NICs.
  1. driverctl - which was a utility I had not heard of and had to install (e.g. yum install driverctl)
  2. a DPDK utility script, written in Python, called dpdk-devbind.py
The script I was following as a reference was using #1, driverctl, and I figured I would use that instead of the utility script.

NOTE: Later, I decided to start using the utility script and found it to be wonderful

But first - before you bind your NIC, you need to load a kernel module.

I am familiar with kernel modules, so to load the module, you can use modprobe (or insmod, but modprobe is preferred). Again, this is via the DPDK website above on binding NICs.

If all goes well loading the vfio_pci kernel module, this module will in fact load 2 more kernel modules, and what I wound up with when I did "lsmod | grep vfio" was this:

# lsmod | grep vfio
vfio_pci               41412  2
vfio_iommu_type1       22440  1
vfio                   32657  6 vfio_iommu_type1,vfio_pci
irqbypass              13503  8 kvm,vfio_pci

So - there is that irqbypass - to disable interrupt processing. And, there is an IOMMU module that gets loaded, probably the result of having IOMMU enabled on the kernel command line!

It looks like the DPDK is loaded nicely. Now, it is time to load the drivers.

Let's talk about that in a Part V.

SLAs using Zabbix in a VMware Environment

 Zabbix 7 introduced some better support for SLAs. It also had better support for VMware. VMware, of course now owned by BroadSoft, has prio...